
Analysis of .NET Obfuscation Applications.

Shashank Sabhlok

Quality Assurance Developer

Savision Inc.

2B Candidate for B.A.Sc. in Electrical Engineering

2nd July 2015

Copyright © 2015 by Shashank Sabhlok. All rights reserved.

TPPE 000 Technical Presentation Proficiency Examination

Analysis of .NET obfuscation applications.

2

Outline

• Company and Problem Overview

• What is Obfuscation ? Why is it necessary for .NET?

• Obfuscator features and requirements.

• Comparison of SmartAssembly and Dotfuscator.

• Conclusion

Analysis of .NET obfuscation applications.

3

Company & Problem Overview

• Savision is a Dutch start-up, that provides IT monitoring solutions to

commercial organizations.

• Their latest product was a HTML 5 application that transforms

complex IT data into actionable and well organized dashboards.

• Problem : Prevent clients or competition from either going through or

altering the .NET code of the application.

• Solution : Obfuscate the code.

https://www.savision.com

Analysis of .NET obfuscation applications.

4

• Obfuscation is an anti-reverse engineering method to cipher the

source code of a specific application.

• It doesn’t tamper with the execution of the intended logic, and yet

makes it difficult for malicious attackers to decipher the code.

• Overcomes the drawbacks of classical security methods like server-

side execution and code cryptography.

What is Code Obfuscation ?

http://www.codekicks.com/2008/02/net-obfuscation-using-dotfuscator-for.html

Analysis of .NET obfuscation applications.

5

Why is it necessary for .NET ?

• Programmers coding in .NET compile their program into

intermediate code called Common Intermediate Language in a

portable execution file which is then managed and run by the

Common Language Runtime.

• The .NET code that is run under CLR is compiled into language

independent intermediate code (Microsoft Intermediate Language),

which at compilation time can be extracted and decompiled using

tools like ILDASM (Microsoft’s MSIL disassembler).

http://en.helpdoc-online.com/dotfuscator_3.0/source/dotf68q6.htm

Analysis of .NET obfuscation applications.

6

Why is it necessary for .NET ?

This simple decompilation process can give attackers the freedom to

analyze the entire software and subsequently do the following:

• Expose Software Licensing code and Business Logic.

• Expose secrets in code including passwords and encryption keys.

• Exploit security flaws.

• Enable and disable certain functionality.

• Modify the application logic and add backdoors to the original code.

Analysis of .NET obfuscation applications.

7

Features and Requirements of the Application

Analysis of .NET obfuscation applications.

8

Control Flow Obfuscation

• This process produces executable logic, but populates the code with

unnecessary iterative and conditional constructs in the code, hence

making it very difficult to analyze upon decompilation.

• The result is that decompilers are unable to reconstruct your code.

Most of the times they crash while trying to do so.

Analysis of .NET obfuscation applications.

9

Before Obfuscation After Obfuscation

public int CompareTo(Object o) {

int n = occurrences –
((WordOccurrence)o).occurrences;

if (n == 0) {
n = String.Compare(

word, ((WordOccurrence)o).word);
}

return(n);
}

public virtual int _a(Object A_0) {

int local0;

int local1;

local 10 = this.a – (c) A_0.a;

if (local0 != 0) goto i0;

while (true) {

return local1;

i0: local1 = local10;

}

i1: local10 =

System.String.Compare(this.b,(c));

goto i0;

}

Control Flow Obfuscation - Example

Code Snippets from [1].

Analysis of .NET obfuscation applications.

10

• Name Obfuscation is usually considered the first line of defense.

• Makes code less documenting by replacing telling names with non-

meaningful ones.

• For example, ‘Home_View.cshtml’ clearly indicates the content of the file

– the front-end logic of the homepage of the application. Good

obfuscators pick up on this.

Name Obfuscation

Analysis of .NET obfuscation applications.

11

• Data Encoding : This process simply adds

unnecessary constructs and operators to

declarations and indexes for different data

structures e.g. Array[i] → D[7(i-8)/2].

• Extent of renaming : An obfuscator can rename

several function, function parameters, variables

and classes to the same name e.g. a(int a) is

called by d(“zzz”).

• Renaming Metadata : Metadata are the .dll files

created upon compilation. These can be

renamed to add another barrier between an

attacker and the code.

Name Obfuscation

Analysis of .NET obfuscation applications.

12

Before Obfuscation After Obfuscation

private void CalcPayroll (SpecialList
employeeGroup) {

while(employeeGroup.HasMore()) {

employee =employeeGroup.GetNext(true);

employee.UpdateSalary();

DistributeCheck(employee);
}
}

private void a(a b) {

while (b.a()) {

a = b.a(true);

a.a();

a(a);
}

}

Name Obfuscation - Example

Code Snippets from [1].

Analysis of .NET obfuscation applications.

13

• Literal strings present in .NET assemblies contain sensitive

information, and are in plain view.

• They can contain login information, passwords, parameters or SQL

Queries.

• For example, if someone wants to remove time locks they can easily

search for instances of strings like “timeout”, “expired", "session” etc.

• Obfuscation encrypt strings by replacing strings with either a series

of random characters or function calls.

String Encryption

Analysis of .NET obfuscation applications.

14

Before Obfuscation After Obfuscation

internal static string CheckLicense(string
LicenseKey){

if(LicenseKey="ABCD")
{

return "Valid License";
}
return "Invalid License";

}

internal static string CheckLicense(string
LicenseKey)
{
if(LicenseKey ==

A70f.A9f4(0x3d84e419,0xf504de2,0x126777ba8))
{

return
A70f.A9f4(0x3d84e419,0xf504de2,0x126777ba);
}

return
A70f.A9f4(0x1cfafefd,0xf50dff2,0x126777be);
}

String Encryption- Example

Code Snippets from [2].

Analysis of .NET obfuscation applications.

15

• Makes the deployment of the application on client’s server quicker.

• There is always extra code in reusable libraries and classes that

considers conditions or cases that are not necessary.

• Removal of this code results in a significantly smaller file size.

Size Reduction

Analysis of .NET obfuscation applications.

16

• After researching several products, two obfuscation applications

were shortlisted – SmartAssembly and Dotfuscator.

• When comparing, the same .dll file was obfuscated twice and the

results were compared on the same disassembler – JetBrains

dotPeek.

• Dotfuscator by PreEmptive Solutions is a Microsoft backed product,

and therefore can easily integrate into Microsoft Visual Studio.

• SmartAssembly by Red-Gate is the more popular of the two and is

known to provide good value for its price

✓ ✓ ✓

Candidates and Comparison

Name Price Tamper

Defense

Renaming String

Encryption

Control Flow

Obfuscation

Size

Reduction

Dotfuscator $2000 yes yes yes yes yes

Smart

Assembly

$993–$1493 no yes yes yes yes

Table 1 : Comparison of Dotfuscator and SmartAssembly. From [3].

Analysis of .NET obfuscation applications.

17

SmartAssembly Dotfuscator
public Dictionary<DashboardsKey, Dashboards>Dashboards1

{

get

{

return this._;

}

set

{

this._ = value;

}

}

public Dictionary<DashboardsKey,Dashboards>Dashboards1{

get

{

Dictionary<DashboardsKey,Dashboards> dictionary;

int i = -28946;

i = -28949;

switch (i == i)

{

case 1:

goto label_0;

i = 0;

goto label_0;

dictionary = eval_b;

break;

}

return dictionary;

}

Comparison of Control Flow Obfuscation

• The major difference was Control Flow Obfuscation. Consider a
dictionary declaration in C# :
public Dictionary<DashboardsKey, Dashboards> Dashboards1 { get; set;}

✔

Analysis of .NET obfuscation applications.

18

• Explored the need to obfuscate .NET applications.

• Considered the key features and of an obfuscator

– Control Flow Obfuscation

– Name Obfuscation

– String Encryption

– Size Reduction.

• Control Flow Obfuscation is the most crucial aspect of an

obfuscation application.

• Dotfuscator was better than SmartAssembly due to extensive

amounts of Control Flow Obfuscation present.

Summary

Analysis of .NET obfuscation applications.

19

• [1] : 8 Ways To Protect And Obfuscate Your .NET Code Against

Reverse-Engineering Using Crypto Obfuscation, Pre-Emptive

Solutions, [Online] 2015,

http://www.preemptive.com/products/dotfuscator/features

• [2] : WHY YOUR .NET APPLICATIONS NEED PROTECTION?,

Code-Wall Technologies,[Online] 2015, http://www.codewall.net/

• [3]: List of obfuscators for .NET, Wikipedia, [Online] 2015,

https://en.wikipedia.org/wiki/List_of_obfuscators_for_.NET

References

Analysis of .NET obfuscation applications.

20

Thank You for your attention !

Questions ?

